lunes, 29 de octubre de 2012

¿Que me pareció mi primer semestre en la universidad?

El primer semestre me pareció algo tedioso pero entretenido ya que trabajo tuvimos siempre y a veces de un día para otro.
También que conocí a nuevos amigos que la verdad me caen bien, los profesores son muy buenos y su método de enseñanza es buena pero algo complicada en algunas materias.

¿Que espero al final del primer semestre?

terminarlo sin quedar a deber una materia y tener buenas calificaciones lo cual sera un reto a cumplir.

Metas a corto, mediano y largo plazo

Metas corto, mediano y largo plazo

A continuación voy a describir mis metas a corto, mediano y largo plazo.

Mis metas a corto plazo son:

Pasar todas mis materias con buenas y terminar el primer semestre calificaciones 

Mis metas a mediano plazo:

mis metas a mediano plazo son continuar con los demás semestres terminar mi carrera.

Mis metas a largo plazo:

Mis metas a largo plazo son titularme como Ingeniero y continuar estudiando una maestría si es posible 

miércoles, 24 de octubre de 2012



Parábola

Definición
Una parábola es el conjunto de todos los puntos de un plazo que son equidistantes de un punto fijo llamado foco y una de recta fija llamada directriz.
Propiedades geométricas
Aunque la definición original de la parábola es la relativa a la sección de un cono recto por un plano paralelo a su directriz, actualmente es más común definir la parábola como un lugar geométrico:
Una parábola es el lugar geométrico de los puntos de un plano equidistantes a una recta dada, llamada directriz, y a un punto exterior a ella, que se denomina foco.
De esta forma, una vez fija una recta y un punto se puede construir una parábola que los tenga por foco y directriz de acuerdo a la siguiente construcción. Sea T un punto cualquiera de la recta directriz. Se une con el foco dado F y a continuación se traza la mediatriz (o perpendicular por el punto medio) del segmento TF. La intersección de la mediatriz con la perpendicular por T a la directriz da como resultado un punto P que pertenece a la parábola. Repitiendo el proceso para diferentes puntos T se puede aproximar tantos puntos de la parábola como sea necesario.
De la construcción anterior se puede probar que la parábola es simétrica respecto a la línea perpendicular a la directriz y que pasa por el foco. Al punto de intersección de la parábola con tal línea (conocida como eje de la parábola) se le conoce como vértice de la parábola y es el punto cuya distancia a la directriz es mínima. La distancia entre el vértice y el foco se conoce como distancia focal o radio focal.
Semejanza de todas las parábolas
  
Dado que la parábola es una sección cónica, también puede describirse como la única sección cónica que tiene excentricidad . La unicidad se refiere a que todas las parábolas son semejantes, es decir, tienen la misma forma, salvo su escala.
Desafortunadamente, al estudiar analíticamente las parábolas (basándose en ecuaciones), se suele afirmar erróneamente que los parámetros de la ecuación cambian la forma de la parábola, haciéndola más ancha o estrecha. La verdad es que todas las parábolas tienen la misma forma, pero la escala (zoom) crea la ilusión de que hay parábolas de formas diferentes.
Un argumento geométrico informal es que al ser la directriz una recta infinita, al tomar cualquier punto y efectuar la construcción descrita arriba, se obtiene siempre la misma curva, salvo su escala, que depende de la distancia del punto a la directriz.

Aplicaciones prácticas
Una consecuencia de gran importancia es que la tangente refleja los rayos paralelos al eje de la parábola en dirección al foco. Las aplicaciones prácticas son muchas: las antenas satelitales y radiotelescopios aprovechan el principio concentrando señales recibidas desde un emisor lejano en un receptor colocado en la posición del foco.
La concentración de la radiación solar en un punto, mediante un reflector parabólico tiene su aplicación en pequeñas cocinas solares y grandes centrales captadoras de energía solar.
Análogamente, una fuente emisora situada en el foco, enviará un haz de rayos paralelos al eje: diversas lámparas y faros tienen espejos con superficies parabólicas reflectantes para poder enviar haces de luz paralelos emanados de una fuente en posición focal. Los rayos convergen o divergen si el emisor se desplaza de la posición focal.

Ecuaciones de la parábola
Con el advenimiento de la geometría analítica se inició un estudio de las formas geométricas basado en ecuaciones y coordenadas.
Una parábola cuyo vértice está en el origen y su eje coincide con el eje de las ordenadas, tiene una ecuación de la forma y=ax2 donde el parámetro a especifica la escala de la parábola, incorrectamente descrita como la forma de la parábola, ya que como se dijo antes, todas las parábolas tienen la misma forma. Cuando el parámetro es positivo, la parábola se abre «hacia arriba» y cuando es negativo se abre «hacia abajo».
Si bien, la expresión en forma de ecuación no fue posible hasta el desarrollo de la geometría analítica, la relación geométrica expresada en la ecuación anterior ya estaba presente en los trabajos de Apolonio,1 y se bosquejará a continuación usando notación moderna.
Tomando nuevamente la definición de parábola como sección de un cono recto de forma paralela a la directriz, sea V un punto en el eje y sea QV perpendicular al eje. (QV corresponde al valor x en la versión analítica y PV al valor y). Considerando la sección circular que pasa por Q y es paralela a la base del cono, obtenemos H, K paralelos a B y C.
Por el teorema de potencia de un punto:
.
Al ser PM paralela a AC, los triángulos HVP, HKA y BCA son semejantes y así:
.
Usando nuevamente los paralelismos:
.
Despejando HV y VK para sustituir en la fórmula de QV² resulta en
.
Pero el valor de   es una constante pues no depende de la posición de V, por lo que haciendo
Arroja la expresión moderna y=ax².

Ecuación general de una parábola
Hasta ahora se han descrito parábolas con sus ejes paralelos a alguno de los ejes de coordenadas. De esta forma las fórmulas son funciones de x ó de y. Pero una parábola puede tener su eje inclinado con respecto a un par de ejes de coordenadas ortogonales.
La expresión algebraica que describe una parábola que ocupe cualquier posición en un plano es:
si y sólo si
y los coeficientes a y c no pueden ser simultáneamente nulos
Mediante traslaciones y rotaciones es posible hallar un sistema de referencia en el que la ecuación anterior se exprese mediante una fórmula algebraica de la forma
 , donde a es distinto de cero.